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Abstract. The operation of drilling rigs is highly expensive. It is therefore 

important to be able to identify and analyse variables affecting rig operations. 

We investigate the use of Genetic Algorithms and Ant Colony Optimisation to 

induce a Bayesian Network model for the real world problem of Rig Operations 

Management and confirm the validity of our previous model. We explore the 

relative performances of different search and scoring heuristics and consider 

trade-offs between best network score and computation time from an industry 

standpoint. Finally, we analyse edge-discovery statistics over repeated runs to 

explain observed differences between the algorithms. 

1 Introduction 

The oil and gas sector is an active industry constantly seeking to research and 

apply new technologies. Drilling rigs are operated by contractors who hire out their 

services to oil companies for both exploration and exploitation. The operation of 

drilling rigs is highly expensive. Typically a rig operating offshore in the Gulf of 

Mexico can cost from $400K to $600K per day, at the time of writing.[1] With rig 

operations lasting weeks or even months at a time, variations in the efficiency with 

which rigs are operated can affect profitability by millions of dollars. It is therefore 

important to be able to identify and analyse variables affecting efficiency. 

In this paper, we apply new ACO-based algorithms to rig operations modelling and 

analyse results alongside those published in [2]. Here, we are interested in exploring 

the relative performances of different search and score heuristics and consider trade-

offs between best network score and computation time from an industry standpoint. 

We also analyse edge-discovery statistics over repeated runs to explain observed 

differences between the algorithms. 

In the following section, we provide an overview of drilling rig operations and the 

rig tendering process. In section 3, we summarise the Bayesian Network modelling 

approach and describe the GA- and ACO-based search and score heuristics [2] [3] 

used to build these networks from the data. In Section 4, we describe our experiments 
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with Rig and Wells data. The experimental results are analysed in Section 5. The final 

section contains conclusions and a brief outline of planned future work.  

2 Rig Operations and The Gulf of Mexico 

The offshore drilling market is dynamic, highly competitive, and regionally-

specific. Oil is located using surveys. Then a drilling rig is brought on site and starts 

drilling. Casings are installed along the way. The well is then secured and installed in 

order to let the oil flow in a controlled manner. The oil rig is then removed from the 

site and production equipment is set up to extract the oil from the well [4]. 

Regarding performance, Harris, in [5] explains that although no two wells perform 

exactly the same, consistently good results are a good indicator of a rig’s capability. 

He highlights three main criteria, currently used to select rigs: technical suitability, 

price, and availability. Other, more recent, evaluation criteria are exposed by 

Osmunsen in [6] and are starting to be used, mainly in Europe for the moment. 

Rig tendering is the process by which a company contracts a rig for a given 

operation. When selecting a rig for a drilling programme, an operator typically has 

three main criteria: technical suitability, price, and availability. Some technical 

parameters are absolute and determine the type of rig and equipment. Examples are 

water depth, pressure and temperature ratings, etc. However, alternatives can 

sometimes be suitable: under some conditions, semi-submersibles can operate in jack-

up water depth [5]. Many of the other technical requirements included in an invitation 

to tender are often preferences rather than necessities.  

In recent years, quality has been made more important in decision-making and 

contractors in Europe are often asked to provide percentage downtime and indicators 

of drilling efficiency for the past six wells including water depth, mooring time, loss 

of time and repair time [6]. However this information is not often available in most 

regions across the globe. Various regions have different regulations and do not require 

the same level of disclosure from drilling companies. 

For this paper, we are using the Gulf of Mexico Rigs and Wells Dataset as built by 

us in [2], using ODS-Petrodata ltd. [1] market intelligence databases. 

3 Bayesian Networks 

Using our exclusive dataset, we are creating a model of the data. Bayesian 

Networks are probabilistic models based on Bayesian Inference [7]. They are useful 

for representing knowledge under uncertainty. They can be depicted using a Directed 

Acyclic Graph (DAG) associated with a joint probability distribution [8]. Each node 

of the graph represents a random variable Xi related to a problem domain. Conditional 

dependencies between variables are represented by directed ―parent-child‖ edges in 

the DAG. The probability distribution factorises according to these conditional 

dependencies. Formally, the joint probability distribution P(X) over the set of random 

variables X = X1,…,Xn, is determined as the product shown in (1). Here, Pa(Xi) 

denotes the set of parents of node Xi . 
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To make use of the power of Bayesian Networks in knowledge representation and 

inference, the network has to be constructed for the given domain. This construction 

is based on learning from the data collection. The underlying Directed Acyclic Graph 

structure representing the network has to be learned and then the conditional 

probabilities calculated. Learning the underlying structure is a hard problem [9] 

because the number of possible structures grows super-exponentially with the number 

of variables [10]. One widely used approach to this problem is search and score. A 

metaheuristic is used to search a space representing possible networks. Each solution 

is scored according to how well it reflects the observed distribution of the data.  

The rest of this section illustrates the structure of the algorithms used in the 

experiments for this publication. The code we developed for those algorithms are 

publicly available on request to the corresponding author.  

3.1 The K2 algorithm 

The K2 algorithm was proposed by Cooper and Herskovitz [11]. K2 assumes that a 

priori all structures are equally likely and that cases in the data occur independently 

and are complete. Moreover, it assumes the presence of a node ordering and imposes 

a maximum number of parents for each node (inbound edges). When these conditions 

are satisfied, K2 starts with an empty ancestor set for each node and incrementally 

adds links that maximize the score of the resulting structure. The K2-CH score 

captures the probability of a candidate network structure Bs given a set of data D. 

Formally the discrete probability P(Bs,D) is given by (2). 
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Here qi denotes the number of possible different instances the parent of variable Xi 

can take. ri is the number of values Xi has, Nijk denotes the number of cases in the 

dataset D in which Xi takes value k of its xi instance when its parent Pai has its j
th

 

value. Nij is the sum of all Nijk for all values xi can take. The algorithm stops when no 

more ancestor node additions improve the score.  

As in [8], we observe that although simple to implement and widely used, K2 is 

prone to local optima and may not find the globally best structure. Moreover, it relies 

on prior knowledge of the node ordering and, as a result, may return non-equivalent 

structures given different orderings. For the Gulf of Mexico dataset, several variables 

have large value sets, leading to significant computational cost. 

3.2 K2GA and ChainGA 

One search and score approach is to search the smaller space of variable node 

orderings using a metaheuristic and use a greedy algorithm to build solutions from 

each ordering. These solutions are then scored and the result passed back to the 

metaheuristic. This is more efficient than searching through the space of Bayesian 
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Network structures and it has the additional advantage of eliminating all cyclic 

structures and structures incompatible with the given ordering. An exhaustive search 

through all orderings for large problems would be intractable, of order !nO  
for a 

problem of size n [8]. Also, the greedy algorithms on selected orderings have non-

trivial evaluation cost because of the computation involved in the K2-CH score. 

In [12], Larrañaga et al. propose a genetic algorithm to search the space of node 

orderings rather than the full space of structures. The fitness of each ordering is 

calculated by running the greedy search algorithm K2 on that ordering and returning 

the score of the network structure found. For the purpose of this paper, we denote 

Larrañaga’s algorithm by K2GA. 

Kabli et al. [8] propose an alternative way of reducing the computational cost 

related to this by using chain structures to evaluate orderings, replacing the K2 

expensive evaluation in K2GA. ChainGA also searches the space of node orderings 

and assigns a value to each ordering based on the K2-CH score [21]. However, rather 

than using K2 to construct a network on each ordering, ChainGA evaluates a fixed 

chain structure. This low resolution evaluation phase terminates in a set of orderings 

that have the highest evaluated K2-CH scores found with this structure. ChainGA 

then enters a second phase where K2 is run on a percentage of the best orderings 

found to search for a good structure.  

3.3 K2ACO and ChainACO 

We use Ant Colony Optimisation [13] for Bayesian Networks structure learning 

based on two existing approaches - K2GA and ChainGA. In this paper, we name the 

new approaches as K2ACO and ChainACO respectively. The details are available 

from [3] and the code from the corresponding author.  

We use Ant Colony Optimisation to replace the GA search in K2GA. In K2ACO 

[3], the initial individuals in the population are randomly created node orderings 

which are then optimized by a colony of ants [13] in this space until a good ordering 

is found. During the Ant Colony Optimisation process, the fitness of each ordering is 

calculated by running the K2 search algorithm on it. Once the optimisation 

terminates, K2 is used to obtain the structure corresponding to best ordering found.  

The main idea of the ChainACO [3] approach comes from ChainGA. ChainACO 

also has two phases. In the first phase of ChainACO, we construct chains using ACO 

instead of GA. The second phase also applies K2 to the best orderings found and 

returns the best structure.  

4 Data And Experiments  

We base our experiment on previous work by Kabli et al. [9] and us [2], [3].  

In addition to the number of variables, two other elements have a direct influence 

on the runtime length: the number of values in each variable and the size of the 

dataset.  For this experiment, we used a subset of 2500 cases randomly selected from 

the dataset. Table 3 illustrates run times for 2500 cases. For 100 and 2500 cases, using 

K2GA, the run times were about 20 minutes and up to about 42 hours respectively. 
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No preliminary run could be completed at present using all the 6670 cases available in 

the dataset. 

Using K2GA and ChainGA, we built our Bayesian network model that represents 

the dataset. We ran each algorithm 40 times over the Rig-Well dataset. The 

algorithms were run on 200 generations with a population size of 30 node orderings. 

Displacement Mutation and Cycle Crossover rates were 0.05 and 0.9 respectively. 

The selection used was a tournament selection of size 4. The best-scored resulting 

network was then chosen as the optimal model for the problem at hand.  

Similarly, we ran the K2ACO and ChainACO algorithms on our dataset. We used 

8 ants and a maximum of 30 iterations. We compared the results using paired samples 

T-test to validate their significance.  

We recorded the optimal orderings found in each run, for each algorithm.  We then 

counted the directed edges (relating to immediate node juxtapositions) appearing in 

the best ordering for each of the runs of each algorithm. We obtain a total of 160 

orderings and hence 16 x 160 = 2560 edges. This enabled us to create greyscale 

representations of the edges occurrences. The vertical axis represents the first node; 

the horizontal axis represents the second node. The shade is darker proportional to the 

number of occurrences of a juxtaposition of nodes in the best orderings. This scale is 

absolute across all experiments.  

5 Experimental Results 

Figures 5 illustrates the Bayesian Network models learned from data using the 

algorithms. In this figure, as in [2] we can see some matching relationships formed in 

the models created by K2GA, ChainGA, K2ACO and ChainACO. We start by 

reviewing the performance of each of the algorithm, as measured by the K2-CH score. 

We assess the structure produced, looking at the variability between algorithms as 

they are assessed from an industry standpoint. We then review the edges frequency 

charts and explain observed differences between the algorithms.  

5.1 Performance of the algorithms 

The mean structure scores for each algorithm are presented in Table 1. We carried 

out significance tests on all pairs of means and the results are shown in Table 2. All 

differences are significant at or beyond a 99.95% confidence level. K2GA produces 

on average significantly better scoring structures than all of the other algorithms, on 

our dataset. The best-ever individual for K2GA scored -55534 compared to -60203 

for ChainGA, -55781 for K2ACO and -55976 for ChainACO on our relative score 

scale (log of K2-CH score). Although significantly different, we can see that the 

results from K2ACO and ChainACO are much closer to K2GA than ChainGA, and 

they also benefit from a smaller standard deviation, showing their stability compared 

to ChainGA’s. This is consistent with observations in [2] and [8]. Table 2 confirms 

that K2GA, K2ACO and ChainACO are much closer to each other, in term of scoring, 

than ChainGA.  The difference in the  Mean Score of all pairs formed from those 

K2GA, K2ACO and ChainACO is less than 1000 when all pairs involving ChainGA 
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have a difference in Mean Score around 7000. It is to be noted that, as discussed in [2] 

and [8], the performance of ChainGA relating to K2GA appears to be highly problem-

dependent. We expect that the performance of K2ACO and ChainACO will also be 

problem-dependent. This is confirmed in our research published in [3]. 

Table 1: Means and Standard Deviations of best Individuals K2 scores 

 N Mean Score Standard Deviation 

K2GA 45 -56197.44 205.2 

ChainGA 45 -66434.34 1237.7 

K2ACO 41 -56265.43 297.8 

K2GA 40 -56556.41 254.7 

Table 2:Paired t-test of best Individuals K2 score across all runs 

Pair N Paired Mean Score Paired Standard Deviation P 

K2GA-ChainGA 43 7721.67929 954.36040 < 0.0005 

K2ACO-ChainACO 40 308.39004 109.75538 < 0.0005 

K2GA-K2ACO 41 410.36738 298.73114 < 0.0005 

ChainGA-ChainACO 40 -6885.66520 653.74622 < 0.0005 

K2GA-ChainACO 40 694.27588 234.91863 < 0.0005 

ChainGA-K2ACO 41 -7220.71854 658.14672 < 0.0005 

Mean runtimes for each algorithm are presented in Table 3. The ChainGA runtime 

is about a quarter of the K2GA runtime. K2ACO requires a significantly different but 

closer time to ChainGA. However, ChainACO completes with runtimes divided by a 

factor of 10 when compared to K2ACO or ChainGA and a by a factor of 40 when 

compared to K2GA. We therefore observe trade-offs between quality and 

computation time. Similar tradeoffs were observed in [2] on benchmark problems 

with known solutions.  

Table 3: Time Statistics per run over all runs 

 Average Standard Deviation 

K2GA 42h 28min 5h 9min 

ChainGA 11h 1min 1h 11min 

K2ACO 11h 50min 0h 41min 

ChainACO 1h 39min 0h 5min 

The score of ACO-based algorithms being much closer to K2GA than ChainGA, 

the loss of quality compared to the gain of time is statistically significant, but smaller 

than the loss of gain obtained by ChainGA. The long computation times required on 

this problem are in a large part due to the number of distinct values taken by many of 

the variables. Considering the vast amount of data available to us, K2GA might not be 

feasible in some cases for building larger models whereas ChainACO will allow us to 

build a model taking into account more of the data available.  

5.2 Expert evaluation of the model 

The best network structures produced by both K2GA and ChainGA have been 

presented to Rig and Wells data experts. We also compare the best network structure 

produced by K2ACO and ChainACO to the previous results [2]. All the algorithms 

discovered interactions between Rig Capabilities, Rig Types and Water Depth nodes. 

Experts highlighted that those are linked because specific rig types typically operate 



Application of Evolutionary Algorithms to Learning Evolved Bayesian Network Models of 

Rig Operations in the Gulf of Mexico  7 

at a specific range of water depth. Another group of interactions is identifiable 

between Well Result, Well Status and Well Type. Only ChainACO omitted that link; 

however, as the search is non-deterministic, another run of ChainACO might find it. 

The Total Footage Drilled node also interacts with the node representing the Drilling 

Phase and the one representing the Footage Drilled per Day. Also, there is a 

correlation between the Water Depth and the Rig Type nodes. Those will be logically 

related because of the technical abilities of specific rigs to allow them to work at 

specified depth. The relationships between the Rig Type, the Rig Owner and the Rig 

Contractor are justified by the propensity of rig owner and contractors to work 

together repetitively  and to be specialized in specific type of rigs built on the same 

plans. These specific interactions have consistently been identified by all of our 

algorithms. Our networks also identify a relationship between the Shore Base and the 

region where the drilling rig is operating. This is another logical geographical 

association showing the abilities of the algorithms to learn valid information and build 

Bayesian Networks from data. 

The partial separation between Well-related and Rig-related variables (With the 

exception of geographical and water depth variables) suggests a potential difficulty in 

using the model as a predictor for Rig variables using Well data or for Well variables 

using rig data. However, adding some key variables might solve that problem. Water 

depth, originating from the well database has emerged as a key variable that correlates 

with the rig capabilities and hence confirms its position as a significant variable in the 

choice of a rig. In the Gulf of Mexico, which typically has a uniform geological 

profile, this may be a reasonable assumption; however, this will have to be explored 

further and confirmed on worldwide data where a range of geological profiles and 

water depths will exist. Alternatively, there may be additional variables in the Wells 

and Rigs database that do correlate more closely. Also, we would expect geological 

and other variables to be relevant in more heterogeneous regions.  
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Figure 1: superposition of networks 



5.3 Analysis of the node juxtapositions 

Figure 2 represents the occurrences of node juxtapositions as a greyscale grid. The 

vertical axis represents the first node; the horizontal axis represents the second node. 

The shade is darker proportionally to the number of occurrences of node 

juxtapositions within the best ordering of each run for all four algorithms. 

Precedence in an ordering means eligibility for membership of the parent set in a 

Bayesian Network structure. The Chain-based algorithms insert a directed edge 

between each ordered node and its immediate successor, i.e. from a node 

juxtaposition in the ordering. The K2-based algorithms, when considering a particular 

ordered node, will first try inserting an edge from its immediate predecessor and so 

have a bias in favour of such edges. Therefore consideration of which of these edges 

would result from the best orderings found in each run of each algorithm will give us 

statistics which describe the distribution of search outcomes for this problem.  

  

Figure 2: Grayscale representation of node juxtapositions 

 Figure 2 shows that K2GA explores the search space more broadly, without 

focusing on any specific link. This explains why it finds better solutions, but this is an 

expensive behaviour. ChainGA seems to focus the exploration on the most likely 

chains. However, its score is lower than that of other algorithms. K2ACO reduces 

even further the thoroughness of the search but performs better than ChainGA. ACO-

based algorithms, on this problem, seem to be more stable than ChainGA, and also 
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focus more quickly onto the most important part of the ordering, compared to GA-

based algorithms. ChainACO clearly focuses on some important nodes, converging 

quickly and consistently towards a good solution. We are observing here the effects of 

two choices: K2/Chain and GA/ACO.  

Given an ordering, K2 is free to add any parent-child link in its process of 

constructing a full Bayesian Network for the purposes of evaluating the ordering. 

Chain on the other hand constructs precisely those parent-child links corresponding to 

nodes immediately juxtaposed in the ordering. Therefore for Chain the distribution of 

fitness (in phase 1) will be on those orderings that juxtapose strongly related 

variables, thus focusing the search on this restricted set of orderings. The K2 approach 

will distribute fitness across a wider set of orderings and so a wider set of variable 

juxtapositions will still allow variables to be related in the structures K2 builds. 

It is well-known that GA tends to be a noisier metaheuristic than ACO. Thus, we 

would expect that the GA algorithms would have a higher variance than the ACO 

ones and we would see a wider search distribution. This is indeed what we observe. 

6 Conclusion 

In this paper we explored and assessed methods for the discovery of Bayesian 

Network from rig operations data. We compared the use of K2GA, ChainGA, 

K2ACO and ChainACO — Genetic Algorithms and Ant Colony Optimisation 

algorithms based on node orderings with different approaches to evaluation. The 

algorithms found credible network structures, as assessed by industry experts. K2GA 

found significantly better structures than other algorithms tested on this dataset. 

Comparison of node juxtapositions in the best orderings showed that, for different 

reasons, the choice of Chain as a scoring mechanism or ACO as a metaheuristic, 

tended to focus the search on a narrower set of orderings. This proved beneficial for 

this problem but may not do so in general. However, the computational effort required 

for ChainACO is a fraction of the effort needed for K2GA. An additional potential 

improvement would be to use different scoring metrics such as Minimum Description 

Length (MDL) [14] [15] [16] as suggested by Kabli et al. [9] to score the node 

ordering before processing it with K2. Also, another way to increase performance 

while still saving on execution time would be to use a hybrid of the Chain and K2 

approaches – use chain most of the time and occasionally spend on K2 to improve the 

quality of information driving the search. 

 This research is an additional step toward a model that could be used to answer 

various queries relating to applications such as Drilling Rig Selection, Rig 

Performance forecasting and Rig Operation Scheduling [2]. The potential of Bayesian 

networks here is to support decision making in a more intuitive and objective way 

than current human processing methods. We plan to explore this by including more 

data in the model and to do a larger scale comparison across more variables. Covering 

larger geographical regions and ultimately worldwide data will in the future allow us 

to develop the model into a global application.  
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